Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A metabolite roadmap of the wood-forming tissue in Populus tremula.

Identifieur interne : 000595 ( Main/Exploration ); précédent : 000594; suivant : 000596

A metabolite roadmap of the wood-forming tissue in Populus tremula.

Auteurs : Ilka N. Abreu [Suède] ; Annika I. Johansson [Suède] ; Katarzyna Sokołowska [Suède, Pologne] ; Totte Niittyl [Suède] ; Björn Sundberg [Suède] ; Torgeir R. Hvidsten [Suède, Norvège] ; Nathaniel R. Street [Suède] ; Thomas Moritz [Suède, Danemark]

Source :

RBID : pubmed:32648607

Abstract

Wood, or secondary xylem, is the product of xylogenesis, a developmental process that begins with the proliferation of cambial derivatives and ends with mature xylem fibers and vessels with lignified secondary cell walls. Fully mature xylem has undergone a series of cellular processes, including cell division, cell expansion, secondary wall formation, lignification and programmed cell death. A complex network of interactions between transcriptional regulators and signal transduction pathways controls wood formation. However, the role of metabolites during this developmental process has not been comprehensively characterized. To evaluate the role of metabolites during wood formation, we performed a high spatial resolution metabolomics study of the wood-forming zone of Populus tremula, including laser dissected aspen ray and fiber cells. We show that metabolites show specific patterns within the wood-forming zone, following the differentiation process from cell division to cell death. The data from profiled laser dissected aspen ray and fiber cells suggests that these two cell types host distinctly different metabolic processes. Furthermore, by integrating previously published transcriptomic and proteomic profiles generated from the same trees, we provide an integrative picture of molecular processes, for example, deamination of phenylalanine during lignification is of critical importance for nitrogen metabolism during wood formation.

DOI: 10.1111/nph.16799
PubMed: 32648607


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A metabolite roadmap of the wood-forming tissue in Populus tremula.</title>
<author>
<name sortKey="Abreu, Ilka N" sort="Abreu, Ilka N" uniqKey="Abreu I" first="Ilka N" last="Abreu">Ilka N. Abreu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, S-901 83, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, S-901 83</wicri:regionArea>
<wicri:noRegion>S-901 83</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Johansson, Annika I" sort="Johansson, Annika I" uniqKey="Johansson A" first="Annika I" last="Johansson">Annika I. Johansson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, S-901 83, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, S-901 83</wicri:regionArea>
<wicri:noRegion>S-901 83</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sokolowska, Katarzyna" sort="Sokolowska, Katarzyna" uniqKey="Sokolowska K" first="Katarzyna" last="Sokołowska">Katarzyna Sokołowska</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, S-901 83, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, S-901 83</wicri:regionArea>
<wicri:noRegion>S-901 83</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Developmental Biology, Institute of Experimental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, Wrocław, 50-328, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Department of Plant Developmental Biology, Institute of Experimental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, Wrocław, 50-328</wicri:regionArea>
<wicri:noRegion>50-328</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Niittyl, Totte" sort="Niittyl, Totte" uniqKey="Niittyl T" first="Totte" last="Niittyl">Totte Niittyl</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, S-901 83, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, S-901 83</wicri:regionArea>
<wicri:noRegion>S-901 83</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sundberg, Bjorn" sort="Sundberg, Bjorn" uniqKey="Sundberg B" first="Björn" last="Sundberg">Björn Sundberg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, S-901 83, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, S-901 83</wicri:regionArea>
<wicri:noRegion>S-901 83</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Forest Division, Stora Enso AB, Nacka, SE-13104, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Forest Division, Stora Enso AB, Nacka, SE-13104</wicri:regionArea>
<wicri:noRegion>SE-13104</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hvidsten, Torgeir R" sort="Hvidsten, Torgeir R" uniqKey="Hvidsten T" first="Torgeir R" last="Hvidsten">Torgeir R. Hvidsten</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-901 87, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-901 87</wicri:regionArea>
<wicri:noRegion>S-901 87</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, NO-1433, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, NO-1433</wicri:regionArea>
<wicri:noRegion>NO-1433</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Street, Nathaniel R" sort="Street, Nathaniel R" uniqKey="Street N" first="Nathaniel R" last="Street">Nathaniel R. Street</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-901 87, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-901 87</wicri:regionArea>
<wicri:noRegion>S-901 87</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Moritz, Thomas" sort="Moritz, Thomas" uniqKey="Moritz T" first="Thomas" last="Moritz">Thomas Moritz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, S-901 83, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, S-901 83</wicri:regionArea>
<wicri:noRegion>S-901 83</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>The NovoNordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark.</nlm:affiliation>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>The NovoNordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200</wicri:regionArea>
<wicri:noRegion>DK-2200</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32648607</idno>
<idno type="pmid">32648607</idno>
<idno type="doi">10.1111/nph.16799</idno>
<idno type="wicri:Area/Main/Corpus">000199</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000199</idno>
<idno type="wicri:Area/Main/Curation">000199</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000199</idno>
<idno type="wicri:Area/Main/Exploration">000199</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A metabolite roadmap of the wood-forming tissue in Populus tremula.</title>
<author>
<name sortKey="Abreu, Ilka N" sort="Abreu, Ilka N" uniqKey="Abreu I" first="Ilka N" last="Abreu">Ilka N. Abreu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, S-901 83, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, S-901 83</wicri:regionArea>
<wicri:noRegion>S-901 83</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Johansson, Annika I" sort="Johansson, Annika I" uniqKey="Johansson A" first="Annika I" last="Johansson">Annika I. Johansson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, S-901 83, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, S-901 83</wicri:regionArea>
<wicri:noRegion>S-901 83</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sokolowska, Katarzyna" sort="Sokolowska, Katarzyna" uniqKey="Sokolowska K" first="Katarzyna" last="Sokołowska">Katarzyna Sokołowska</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, S-901 83, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, S-901 83</wicri:regionArea>
<wicri:noRegion>S-901 83</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Developmental Biology, Institute of Experimental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, Wrocław, 50-328, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Department of Plant Developmental Biology, Institute of Experimental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, Wrocław, 50-328</wicri:regionArea>
<wicri:noRegion>50-328</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Niittyl, Totte" sort="Niittyl, Totte" uniqKey="Niittyl T" first="Totte" last="Niittyl">Totte Niittyl</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, S-901 83, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, S-901 83</wicri:regionArea>
<wicri:noRegion>S-901 83</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sundberg, Bjorn" sort="Sundberg, Bjorn" uniqKey="Sundberg B" first="Björn" last="Sundberg">Björn Sundberg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, S-901 83, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, S-901 83</wicri:regionArea>
<wicri:noRegion>S-901 83</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Forest Division, Stora Enso AB, Nacka, SE-13104, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Forest Division, Stora Enso AB, Nacka, SE-13104</wicri:regionArea>
<wicri:noRegion>SE-13104</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hvidsten, Torgeir R" sort="Hvidsten, Torgeir R" uniqKey="Hvidsten T" first="Torgeir R" last="Hvidsten">Torgeir R. Hvidsten</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-901 87, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-901 87</wicri:regionArea>
<wicri:noRegion>S-901 87</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, NO-1433, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, NO-1433</wicri:regionArea>
<wicri:noRegion>NO-1433</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Street, Nathaniel R" sort="Street, Nathaniel R" uniqKey="Street N" first="Nathaniel R" last="Street">Nathaniel R. Street</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-901 87, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-901 87</wicri:regionArea>
<wicri:noRegion>S-901 87</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Moritz, Thomas" sort="Moritz, Thomas" uniqKey="Moritz T" first="Thomas" last="Moritz">Thomas Moritz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, S-901 83, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, S-901 83</wicri:regionArea>
<wicri:noRegion>S-901 83</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>The NovoNordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark.</nlm:affiliation>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>The NovoNordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200</wicri:regionArea>
<wicri:noRegion>DK-2200</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Wood, or secondary xylem, is the product of xylogenesis, a developmental process that begins with the proliferation of cambial derivatives and ends with mature xylem fibers and vessels with lignified secondary cell walls. Fully mature xylem has undergone a series of cellular processes, including cell division, cell expansion, secondary wall formation, lignification and programmed cell death. A complex network of interactions between transcriptional regulators and signal transduction pathways controls wood formation. However, the role of metabolites during this developmental process has not been comprehensively characterized. To evaluate the role of metabolites during wood formation, we performed a high spatial resolution metabolomics study of the wood-forming zone of Populus tremula, including laser dissected aspen ray and fiber cells. We show that metabolites show specific patterns within the wood-forming zone, following the differentiation process from cell division to cell death. The data from profiled laser dissected aspen ray and fiber cells suggests that these two cell types host distinctly different metabolic processes. Furthermore, by integrating previously published transcriptomic and proteomic profiles generated from the same trees, we provide an integrative picture of molecular processes, for example, deamination of phenylalanine during lignification is of critical importance for nitrogen metabolism during wood formation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32648607</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Jul</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>A metabolite roadmap of the wood-forming tissue in Populus tremula.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.16799</ELocationID>
<Abstract>
<AbstractText>Wood, or secondary xylem, is the product of xylogenesis, a developmental process that begins with the proliferation of cambial derivatives and ends with mature xylem fibers and vessels with lignified secondary cell walls. Fully mature xylem has undergone a series of cellular processes, including cell division, cell expansion, secondary wall formation, lignification and programmed cell death. A complex network of interactions between transcriptional regulators and signal transduction pathways controls wood formation. However, the role of metabolites during this developmental process has not been comprehensively characterized. To evaluate the role of metabolites during wood formation, we performed a high spatial resolution metabolomics study of the wood-forming zone of Populus tremula, including laser dissected aspen ray and fiber cells. We show that metabolites show specific patterns within the wood-forming zone, following the differentiation process from cell division to cell death. The data from profiled laser dissected aspen ray and fiber cells suggests that these two cell types host distinctly different metabolic processes. Furthermore, by integrating previously published transcriptomic and proteomic profiles generated from the same trees, we provide an integrative picture of molecular processes, for example, deamination of phenylalanine during lignification is of critical importance for nitrogen metabolism during wood formation.</AbstractText>
<CopyrightInformation>©2020 The Authors. New Phytologist ©2020 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Abreu</LastName>
<ForeName>Ilka N</ForeName>
<Initials>IN</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-4728-0161</Identifier>
<AffiliationInfo>
<Affiliation>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, S-901 83, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Johansson</LastName>
<ForeName>Annika I</ForeName>
<Initials>AI</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, S-901 83, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sokołowska</LastName>
<ForeName>Katarzyna</ForeName>
<Initials>K</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-5874-207X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, S-901 83, Sweden.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Plant Developmental Biology, Institute of Experimental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, Wrocław, 50-328, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Niittylä</LastName>
<ForeName>Totte</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-8029-1503</Identifier>
<AffiliationInfo>
<Affiliation>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, S-901 83, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sundberg</LastName>
<ForeName>Björn</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, S-901 83, Sweden.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Forest Division, Stora Enso AB, Nacka, SE-13104, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hvidsten</LastName>
<ForeName>Torgeir R</ForeName>
<Initials>TR</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-6097-2539</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-901 87, Sweden.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, NO-1433, Norway.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Street</LastName>
<ForeName>Nathaniel R</ForeName>
<Initials>NR</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-6031-005X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-901 87, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moritz</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-4258-3190</Identifier>
<AffiliationInfo>
<Affiliation>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, S-901 83, Sweden.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>The NovoNordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>KAW 2011.02.12</GrantID>
<Agency>Knut & Alice Wallenberg Foundation</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Sveriges Lantbruksuniversitet</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Svenska Forskningsrådet Formas</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Carl Tryggers Stiftelse för Vetenskaplig Forskning</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Kempe Foundation</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Populus </Keyword>
<Keyword MajorTopicYN="N">cambium</Keyword>
<Keyword MajorTopicYN="N">crysectioning</Keyword>
<Keyword MajorTopicYN="N">laser capture microdissection</Keyword>
<Keyword MajorTopicYN="N">metabolomics</Keyword>
<Keyword MajorTopicYN="N">wood</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32648607</ArticleId>
<ArticleId IdType="doi">10.1111/nph.16799</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Abreu IN, Ahnlund M, Moritz T, Albrectsen BR. 2011. UHPLC-ESI/TOFMS determination of salicylate-like phenolic gycosides in Populus tremula leaves. Journal of Chemical Ecology 37: 857-870.</Citation>
</Reference>
<Reference>
<Citation>Adolfsson L, Nziengui H, Abreu IN, Šimura J, Beebo A, Herdean A, Aboalizadeh J, Široká J, Moritz T, Novák O et al. 2017. Enhanced secondary- and hormone metabolism in leaves of Arbuscular Mycorrhizal Medicago truncatula. Plant Physiology 175: 392-411.</Citation>
</Reference>
<Reference>
<Citation>Andersson-Gunneras S, Mellerowicz EJ, Love J, Segerman B, Ohmiya Y, Coutinho PM, Nilsson P, Henrissat B, Moritz T, Sundberg B. 2006. Biosynthesis of cellulose-enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. The Plant Journal 45: 144-165.</Citation>
</Reference>
<Reference>
<Citation>Babst BA, Harding SA, Tsai CJ. 2010. Biosynthesis of phenolic glycosides from phenylpropanoid and benzenoid precursors in Populus. Journal of Chemical Ecology 36: 286-297.</Citation>
</Reference>
<Reference>
<Citation>Benkova E, Ivanchenko MG, Friml J, Shishkova S, Dubrovsky JG. 2009. A morphogenetic trigger: is there an emerging concept in plant developmental biology? Trends in Plant Science 14: 189-193.</Citation>
</Reference>
<Reference>
<Citation>Bhalerao RP, Fischer U. 2014. Auxin gradients across wood-instructive or incidental? Physiologia Plantarum 151: 43-51.</Citation>
</Reference>
<Reference>
<Citation>Björklund S, Antti H, Uddestrand I, Moritz T, Sundberg B. 2007. Cross-talk between gibberellin and auxin in development of Populus wood: gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. The Plant Journal 52: 499-511.</Citation>
</Reference>
<Reference>
<Citation>Blokhina O, Laitinen T, Hatakeyama Y, Delhomme N, Paasela T, Zhao L, Street NR, Wada H, Kärkönen A, Fagerstedt K. 2019. Ray parenchymal cells contribute to lignification of tracheids in developing xylem of Norway spruce. Plant Physiology 181: 1552-1572.</Citation>
</Reference>
<Reference>
<Citation>Cantón FR, Suárez MF, Cánovas FM. 2005. Molecular aspects of nitrogen mobilization and recycling in trees. Photosynthesis Research 83: 265-278.</Citation>
</Reference>
<Reference>
<Citation>Che P, Weaver LM, Wurtele ES, Nikolau BJ. 2003. The role of biotin in regulating 3-methylcrotonyl-coenzyme A carboxylase expression in Arabidopsis. Plant Physiology 131: 1479-1486.</Citation>
</Reference>
<Reference>
<Citation>Chen H, Wang JP, Liu H, Li H, Lin YJ, Shi R, Yang C, Gao J, Zhou C, Li Q et al. 2019. Hierarchical transcription factor and chromatin binding network for wood formation in black cottonwood (Populus trichocarpa). Plant Cell 31: 602-626.</Citation>
</Reference>
<Reference>
<Citation>Courtois-Moreau CL, Pesquet E, Sjödin A, Muñiz L, Bollhöner B, Kaneda M, Samuels L, Jansson S, Tuominen H. 2009. A unique program for cell death in xylem fibers of Populus stem. The Plant Journal 58: 260-274.</Citation>
</Reference>
<Reference>
<Citation>Digby J, Wareing PF. 1966. Effect of applied growth hormones on cambial division and differentiation of cambial derivatives. Annals of Botany 30: 539.</Citation>
</Reference>
<Reference>
<Citation>Eriksson ME, Israelsson M, Olsson O, Moritz T. 2000. Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nature Biotechnology 18: 784-788.</Citation>
</Reference>
<Reference>
<Citation>Fiehn O. 2002. Metabolomics-the link between genotypes and phenotypes. Plant Molecular Biology 48: 155-171.</Citation>
</Reference>
<Reference>
<Citation>Fischer U, Kucukoglu M, Helariutta Y, Bhalerao RP. 2019. The dynamics of cambial stem cell activity. Annual Review of Plant Biology 70: 293-319.</Citation>
</Reference>
<Reference>
<Citation>Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB. 2004. Metabolomics by numbers: acquiring and understanding global metabolite data. Trends in Biotechnology 22: 245-252.</Citation>
</Reference>
<Reference>
<Citation>Grimberg A, Lager I, Street NR, Robinson KM, Marttila S, Mahler N, Ingvarsson PK, Bhalerao RP. 2018. Storage lipid accumulation is controlled by photoperiodic signal acting via regulators of growth cessation and dormancy in hybrid aspen. New Phytologist 219: 619-630.</Citation>
</Reference>
<Reference>
<Citation>Gullberg J, Jonsson P, Nordstrom A, Sjostrom M, Moritz T. 2004. Design of experiments: an efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry. Analytical Biochemistry 331: 283-295.</Citation>
</Reference>
<Reference>
<Citation>Hertzberg M, Aspeborg H, Schrader J, Andersson A, Erlandsson R, Blomqvist K, Bhalerao R, Uhlén M, Teeri TT, Lundeberg J et al. 2001. A transcriptional roadmap to wood formation. Proceedings of the National Academy of Sciences, USA 98: 14732-14737.</Citation>
</Reference>
<Reference>
<Citation>Immanen J, Nieminen K, Smolander OP, Kojima M, Alonso Serra J, Koskinen P, Zhang J, Elo A, Mähönen AP, Street N et al. 2016. Cytokinin and auxin display distinct but interconnected distribution and signaling profiles to stimulate cambial activity. Current Biology 26: 1990-1997.</Citation>
</Reference>
<Reference>
<Citation>Israelsson M, Sundberg B, Moritz T. 2005. Tissue-specific localization of gibberellins and expression of gibberellin-biosynthetic and signaling genes in wood-forming tissues in aspen. The Plant Journal 44: 494-504.</Citation>
</Reference>
<Reference>
<Citation>Jonsson P, Johansson AI, Gullberg J, Trygg J, Jiye A, Grung B, Marklund S, Sjöström M, Antti H, Moritz T. 2005. High-throughput data analysis for detecting and identifying differences between samples in GC/MS-based metabolomic analyses. Analytical Chemistry 77: 5635-5642.</Citation>
</Reference>
<Reference>
<Citation>Li Z, Omranian N, Neumetzler L, Wang T, Herter T, Usadel B, Demura T, Giavalisco P, Nikoloski Z, Persson S. 2016. A transcriptional and metabolic framework for secondary wall formation in Arabidopsis. Plant Physiology 172: 1334-1351.</Citation>
</Reference>
<Reference>
<Citation>Lourenco A, Rencoret J, Chemetova C, Gominho J, Gutierrez A, Del Rio JC, Pereira H. 2016. Lignin composition and structure differs between xylem, phloem and phellem in Quercus suber L. Frontiers Plant Science 27: 1612.</Citation>
</Reference>
<Reference>
<Citation>Matsumoto-Kitano M, Kusumoto T, Tarkowski P, Kinoshita-Tsujimura K, Václavíková K, Miyawaki K, Kakimoto T. 2008. Cytokinins are central regulators of cambial activity. Proceedings of the National Academy of Sciences, USA 105: 20027-20031.</Citation>
</Reference>
<Reference>
<Citation>Mauriat M, Moritz T. 2009. Analyses of GA20ox- and GID1-over-expressing aspen suggest that gibberellins play two distinct roles in wood formation. The Plant Journal 58: 989-1003.</Citation>
</Reference>
<Reference>
<Citation>Mauriat M, Sandberg LG, Moritz T. 2011. Proper gibberellin localization in vascular tissue is required to control auxin-dependent leaf development and bud outgrowth in hybrid aspen. The Plant Journal 67: 805-816.</Citation>
</Reference>
<Reference>
<Citation>Mellerowicz E, Baucher M, Sundberg B, Boerjan W. 2001. Unravelling cell wall formation in the woody dicot stem. Plant Molecular Biology 47: 239-274.</Citation>
</Reference>
<Reference>
<Citation>Morreel K, Kim H, Lu F, Dima O, Akiyama T, Vanholme R, Niculaes C, Goeminne G, Inzé D, Messens E et al. 2010. Mass spectrometry-based fragmentation as an identification tool in lignomics. Analytical Chemistry 82: 8095-8105.</Citation>
</Reference>
<Reference>
<Citation>Morreel K, Ralph J, Kim H, Lu F, Goeminne G, Ralph S, Messens E, Boerjan W. 2004. Profiling of oligolignols reveals monolignol coupling conditions in Lignifying poplar xylem. Plant Physiology 136: 3537-49.</Citation>
</Reference>
<Reference>
<Citation>Nakaba S, Begum S, Yamagishi Y, Jin H-O, Kubo T, Funada R. 2012. Differences in the timing of cell death, differentiation and function among three different types of ray parenchyma cells in the hardwood Populus sieboldii × P. grandidentata. Trees 26: 743-750.</Citation>
</Reference>
<Reference>
<Citation>Niculaes C, Morreel K, Kim H, Lu FC, Mckee LS, Ivens B, Haustraete J, Vanholme B, Rycke RD, Hertzberg M et al. 2014. Phenylcoumaran benzylic ether reductase prevents accumulation of compounds formed under oxidative conditions in poplar xylem. Plant Cell 26: 3775-3791.</Citation>
</Reference>
<Reference>
<Citation>Nieminen K, Immanen J, Laxell M, Kauppinen L, Tarkowski P, Dolezal K, Tahtiharju S, Elo A, Decourteix M, Ljung K et al. 2008. Cytokinin signaling regulates cambial development in poplar. Proceedings of the National Academy of Sciences, USA 105: 20032-20037.</Citation>
</Reference>
<Reference>
<Citation>Nilsson J, Karlberg A, Antti H, Lopez-Vernaza M, Mellerowicz E, Perrot-Rechenmann C, Sandberg G, Bhalerao RP. 2008. Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. Plant Cell 20: 843-855.</Citation>
</Reference>
<Reference>
<Citation>Ning K, Ding C, Zhu W, Zhang W, Dong Y, Shen Y, Su X. 2018. Comparative metabolomic analysis of the cambium tissue of non-transgenic and multi-gene transgenic poplar (Populus × euramericana 'Guariento'). Frontiers in Plant Science 9: 1201.</Citation>
</Reference>
<Reference>
<Citation>Obudulu O, Bygdell J, Sundberg B, Moritz T, Hvidsten TR, Trygg J, Wingsle G. 2016. Quantitative proteomics reveals protein profiles underlying major transitions in aspen wood development. BMC Genomics 17: 119.</Citation>
</Reference>
<Reference>
<Citation>Ohtani M, Morisaki K, Sawada Y, Sano R, Uy ALT, Yamamoto A, Kurata T, Nakano Y, Suzuki S, Matsuda M et al. 2016. Primary metabolism during biosynthesis of secondary wall polymers of protoxylem vessel elements. Plant Physiology 172: 1612-1624.</Citation>
</Reference>
<Reference>
<Citation>Paulose B, Chhikara S, Coomey J, Jung H, Vatamaniuk O, Dhankhera OP. 2013. A γ-glutamyl cyclotransferase protects Arabidopsis plants from heavy metal toxicity by recycling glutamate to maintain glutathione homeostasis. Plant Cell 25: 4580-95.</Citation>
</Reference>
<Reference>
<Citation>Qualley AV, Widhalm JR, Adebesin F, Kish CM, Dudareva N. 2012. Completion of the core β-oxidative pathway of benzoic acid biosynthesis in plants. Proceedings of the National Academy of Sciences, USA 109: 16383-16388.</Citation>
</Reference>
<Reference>
<Citation>Rende U, Wang W, Gandla ML, Jönsson LJ, Niittyl T. 2016. Cytosolic invertase contributes to the supply of substrate for cellulose biosynthesis in developing wood. New Phytologist 214: 796-807.</Citation>
</Reference>
<Reference>
<Citation>Roach M, Arrivault S, Mahboubi A, Krohn N, Sulpice R, Stitt M, Niittylä T. 2017. Spatially resolved metabolic analysis reveals a central role for transcriptional control in carbon allocation to wood. Journal Experimental Botany 68: 3529-3539.</Citation>
</Reference>
<Reference>
<Citation>Roach M, Gerber L, Sandquist D, Gorzsás A, Hedenström M, Kumar M, Steinhauser MC, Feil R, Daniel G, Stitt M et al. 2012. Fructokinase is required for carbon partitioning to cellulose in aspen wood. The Plant Journal 70: 967-977.</Citation>
</Reference>
<Reference>
<Citation>Ruuhola T, Julkunen-Tiitto R. 2003. Trade-off between synthesis of salicylates and growth of micropropagated Salix pentandra. Journal of Chemical Ecology 29: 1565-1588.</Citation>
</Reference>
<Reference>
<Citation>Schauer N, Steinhauser D, Strelkov S, Schomburg D, Allison G, Moritz T, Lundgren K, Roessner-Tunali U, Forbes MG, Willmitzer L et al. 2005. GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Letters 579: 1332-1337.</Citation>
</Reference>
<Reference>
<Citation>Schrader J, Nilsson J, Mellerowicz E, Berglund A, Nilsson P, Hertzberg M, Sandberg G. 2004. A high-resolution transcript profile across the wood-forming meristem of poplar identifies potential regulators of cambial stem cell identity. Plant Cell 16: 2278-92.</Citation>
</Reference>
<Reference>
<Citation>Si CL, Li SM, Liu Z, Kim JK, Bae YS. 2011. Antioxidant phenolic glycosides from the bark of Populus ussuriensis Kom. Natural Product Research 25: 1396-401.</Citation>
</Reference>
<Reference>
<Citation>Sundell D, Street NR, Kumar M, Mellerowicz EJ, Kucukoglu M, Johnsson C, Kumar V, Mannapperuma C, Delhomme N, Nilsson O et al. 2017. AspWood: high-spatial-resolution transcriptome profiles reveal uncharacterized modularity of wood formation in Populus tremula. Plant Cell 29: 1585-1604.</Citation>
</Reference>
<Reference>
<Citation>Svacinova J, Novak O, Plackova L, Lenobel R, Holik J, Strnad M, Dolezal K. 2012. A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods 8: 17.</Citation>
</Reference>
<Reference>
<Citation>Tegeder M, Masclaux-Daubresse C. 2018. Source and sink mechanisms of nitrogen transport and use. New Phytologist 217: 35-53.</Citation>
</Reference>
<Reference>
<Citation>Telewski FW, Aloni R, Sauter JJ. 1996. Physiology of secondary tissues of Populus. In: Stettler RF, Bradshaw HD, Heilman PE, Hinckley TM, eds. Biology of Populus and its implications for management and conservation. Ottawa, Canada: NRC Research Press, 301-323.</Citation>
</Reference>
<Reference>
<Citation>Tuominen H, Puech L, Fink S, Sundberg B. 1997. A radial concentration gradient of indole-3-acetic acid is related to secondary xylem development in hybrid aspen. Plant Physiology 115: 577-585.</Citation>
</Reference>
<Reference>
<Citation>Uggla C, Magel E, Moritz T, Sundberg B. 2001. Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in Scots pine. Plant Physiology 125: 2029-2039.</Citation>
</Reference>
<Reference>
<Citation>Uggla C, Mellerowicz EJ, Sundberg B. 1998. Indole-3-acetic acid controls cambial growth in scots pine by positional signaling. Plant Physiology 117: 113-121.</Citation>
</Reference>
<Reference>
<Citation>Uggla C, Moritz T, Sandberg G, Sundberg B. 1996. Auxin as a positional signal in pattern formation in plants. Proceedings of the National Academy of Sciences, USA 93: 9282-9286.</Citation>
</Reference>
<Reference>
<Citation>Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W. 2010. Lignin biosynthesis and structure. Plant Physiology 153: 895-905.</Citation>
</Reference>
<Reference>
<Citation>Vanholme R, Morreel K, Ralph J, Boerjan W. 2008. Lignin engineering. Current Opinion in Plant Biology 11: 278-285.</Citation>
</Reference>
<Reference>
<Citation>Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J, Kapono CA, Luzzatto-Knaan T et al. 2016. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature Biotechnology 34: 828-837.</Citation>
</Reference>
<Reference>
<Citation>Weng JK, Li X, Stout J, Chapple C. 2008. Independent origins of syringyl lignin in vascular plants. Proceedings of the National Academy of Sciences, USA 105: 7887-92.</Citation>
</Reference>
<Reference>
<Citation>Widhalm JR, Dudareva N. 2015. A familiar ring to it: biosynthesis of plant benzoic acids. Molecular Plant 8: 83-97.</Citation>
</Reference>
<Reference>
<Citation>Wildermuth MC. 2006. Variations on a theme: synthesis and modification of plant benzoic acids. Current Opinion in Plant Biology 9: 288-296.</Citation>
</Reference>
<Reference>
<Citation>Ye ZH, Zhong R. 2015. Molecular control of wood formation in trees. Journal of Experimental Botany 66: 4119-4131.</Citation>
</Reference>
<Reference>
<Citation>Zinkgraf M, Liu L, Groover A, Filkov V. 2017. Identifying gene coexpression networks underlying the dynamic regulation of wood-forming tissues in Populus under diverse environmental conditions. New Phytologist 214: 1464-1478.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Danemark</li>
<li>Norvège</li>
<li>Pologne</li>
<li>Suède</li>
</country>
</list>
<tree>
<country name="Suède">
<noRegion>
<name sortKey="Abreu, Ilka N" sort="Abreu, Ilka N" uniqKey="Abreu I" first="Ilka N" last="Abreu">Ilka N. Abreu</name>
</noRegion>
<name sortKey="Hvidsten, Torgeir R" sort="Hvidsten, Torgeir R" uniqKey="Hvidsten T" first="Torgeir R" last="Hvidsten">Torgeir R. Hvidsten</name>
<name sortKey="Johansson, Annika I" sort="Johansson, Annika I" uniqKey="Johansson A" first="Annika I" last="Johansson">Annika I. Johansson</name>
<name sortKey="Moritz, Thomas" sort="Moritz, Thomas" uniqKey="Moritz T" first="Thomas" last="Moritz">Thomas Moritz</name>
<name sortKey="Niittyl, Totte" sort="Niittyl, Totte" uniqKey="Niittyl T" first="Totte" last="Niittyl">Totte Niittyl</name>
<name sortKey="Sokolowska, Katarzyna" sort="Sokolowska, Katarzyna" uniqKey="Sokolowska K" first="Katarzyna" last="Sokołowska">Katarzyna Sokołowska</name>
<name sortKey="Street, Nathaniel R" sort="Street, Nathaniel R" uniqKey="Street N" first="Nathaniel R" last="Street">Nathaniel R. Street</name>
<name sortKey="Sundberg, Bjorn" sort="Sundberg, Bjorn" uniqKey="Sundberg B" first="Björn" last="Sundberg">Björn Sundberg</name>
<name sortKey="Sundberg, Bjorn" sort="Sundberg, Bjorn" uniqKey="Sundberg B" first="Björn" last="Sundberg">Björn Sundberg</name>
</country>
<country name="Pologne">
<noRegion>
<name sortKey="Sokolowska, Katarzyna" sort="Sokolowska, Katarzyna" uniqKey="Sokolowska K" first="Katarzyna" last="Sokołowska">Katarzyna Sokołowska</name>
</noRegion>
</country>
<country name="Norvège">
<noRegion>
<name sortKey="Hvidsten, Torgeir R" sort="Hvidsten, Torgeir R" uniqKey="Hvidsten T" first="Torgeir R" last="Hvidsten">Torgeir R. Hvidsten</name>
</noRegion>
</country>
<country name="Danemark">
<noRegion>
<name sortKey="Moritz, Thomas" sort="Moritz, Thomas" uniqKey="Moritz T" first="Thomas" last="Moritz">Thomas Moritz</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000595 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000595 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32648607
   |texte=   A metabolite roadmap of the wood-forming tissue in Populus tremula.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32648607" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020